Decay Estimates for Four Dimensional Schrödinger, Klein-gordon and Wave Equations with Obstructions at Zero Energy

نویسندگان

  • WILLIAM R. GREEN
  • EBRU TOPRAK
چکیده

We investigate dispersive estimates for the Schrödinger operator H = −∆+V with V is a real-valued decaying potential when there are zero energy resonances and eigenvalues in four spatial dimensions. If there is a zero energy obstruction, we establish the low-energy expansion eχ(H)Pac(H) = O(1/(log t))A0 +O(1/t)A1 +O((t log t) )A2 +O(t (log t))A3. Here A0, A1 : L (R) → L∞(Rn), while A2, A3 are operators between logarithmically weighted spaces, with A0, A1, A2 finite rank operators, further the operators are independent of time. We show that similar expansions are valid for the solution operators to Klein-Gordon and wave equations. Finally, we show that under certain orthogonality conditions, if there is a zero energy eigevalue one can recover the |t|−2 bound as an operator from L → L∞. Hence, recovering the same dispersive bound as the free evolution in spite of the zero energy eigenvalue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersive Estimates for Four Dimensional Schrödinger and Wave Equations with Obstructions at Zero Energy

We investigate L(R) → L∞(R4) dispersive estimates for the Schrödinger operator H = −∆ + V when there are obstructions, a resonance or an eigenvalue, at zero energy. In particular, we show that if there is a resonance or an eigenvalue at zero energy then there is a time dependent, finite rank operator Ft satisfying ‖Ft‖L1→L∞ . 1/ log t for t > 2 such that ‖ePac − Ft‖L1→L∞ . t , for t > 2. We als...

متن کامل

Dispersive Estimates for Schrödinger Operators in Dimension Two with Obstructions at Zero Energy

We investigate L1(R2) → L∞(R2) dispersive estimates for the Schrödinger operator H = −∆+V when there are obstructions, resonances or an eigenvalue, at zero energy. In particular, we show that the existence of an s-wave resonance at zero energy does not destroy the t−1 decay rate. We also show that if there is a p-wave resonance or an eigenvalue at zero energy then there is a time dependent oper...

متن کامل

Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions

In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...

متن کامل

Asymptotic Behavior of Small Solutions for the Discrete Nonlinear Schrödinger and Klein-gordon Equations

Abstract. We show decay estimates for the propagator of the discrete Schrödinger and Klein-Gordon equations in the form ‖U(t)f‖l∞ ≤ C(1 + |t|)‖f‖l1 . This implies a corresponding (restricted) set of Strichartz estimates. Applications of the latter include the existence of excitation thresholds for certain regimes of the parameters and the decay of small initial data for relevant l norms. The an...

متن کامل

ON THE Lp BOUNDEDNESS OF WAVE OPERATORS FOR TWO-DIMENSIONAL SCHRÖDINGER OPERATORS WITH THRESHOLD OBSTRUCTIONS

Let H = −∆ + V be a Schrödinger operator on L(R) with real-valued potential V , and let H0 = −∆. If V has sufficient pointwise decay, the wave operators W± = s − limt→±∞ eitHe−itH0 are known to be bounded on L(R) for all 1 < p < ∞ if zero is not an eigenvalue or resonance. We show that if there is an s-wave resonance or an eigenvalue only at zero, then the wave operators are bounded on L(R) for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015